
P a g e | 1

Lab manual for Programming in C By Rinki Bhati

LAB MANUAL

for
DATA STRUCTURE USING

C

4th Semester

 Diploma in Computer Engineering

P a g e | 2

Lab manual for Programming in C By Rinki Bhati

Prepared By Rinki Bhati
Department of Computer Science

Raja Jait Singh Govt. Polytechnic, Neemka Faridabad

GENERAL INSTRUCTIONS

1) Students are instructed to bring their Lab Record to the Lab.

2) Students should come to the Lab in time.

3) Students should be in a proper Uniform.

4) It is mandatory to enter your name in Log-in-Register.

5) Headphones should not be used for any other purpose except for listening to the software.

6) Students are not allowed into the lab without I.D. Cards.

7) After completion of any experiment/activity the student must record it in Lab record and get it
signed by the faculty-in-charge.

8) Use of mobile phones during lab hours is strictly prohibited.

9) All students should actively participate in the lab activities.

10) You will not be allowed to copy any software in any format.

11) Marks will be awarded on the basis of the performance in each experiments

OBJECTIVES
 1. To introduce students to the basic knowledge of programming fundamentals of C language.
2. To impart writing skill of C programming to the students and solving problems.
3. To impart the concepts like looping, array, functions, pointers, structure.

COURSE OUTCOME
After completing this lab course you will be able to:

 Identify the problem and formulate an algorithm for it.
 Identify the best data structures to solve the problem
 Store data, process data using appropriate data structures
 Sort the data in ascending or descending order.

P a g e | 3

Lab manual for Programming in C By Rinki Bhati

 Implement trees and various traversing techniques.
 Implement various searching and sorting algorithms and to compare them for checking

efficiency

INDEX

S.NO PRACTICAL DATE SIGN PAGE REMARK

1 Sorting of an array

2 The addition of two matrices using functions.

3 The multiplication of two matrices.

4 Push and pop operation in stack

5 Inserting and deleting elements in queue..

6 Inserting and deleting elements in circular queue .

7 Insertion and deletion of elements in linked list.

8 Insertion and deletion of elements in double linked list.

9 The factorial of a given number with recursion and without

recursion

10 Fibonacci series with recursion and without recursion.

11 Program for binary search tree operation.

12 The selection sort technique.

13 The bubble sort technique.

14 The quick sort technique

15 The merge sort technique.

16 The binary search procedure to search an element in a given

list.

17 The linear search procedures to search an element in a given

list

P a g e | 4

Lab manual for Programming in C By Rinki Bhati

ABOUT DATA STRUCTURE : Data Structure is a way to store and organize data so that it

can be used efficiently. The data structure name indicates itself that organizing the data

in memory. There are many ways of organizing the data in the memory

Hardware Requirement: Desktop Computer / laptop computer.

 Software Requirement: Linux Operating System with GCC / TURBO C in WINDOWS OS / TURBO
C++ in WINDOWS OS.

GCC
GCC is a Linux-based C compiler released by the Free Software Foundation which is usually
operated via the command line. It often comes distributed freely with a Linux installation, so if
you are running UNIX or a Linux variant you will probably have it on your system. You can
invoke GCC on a source code file simply by typing:- gcc filename

The default executable output of GCC is "a.out", which can be run by typing “./a.out”. It is also
possible to specify a name for the executable file at the command line by using the syntax “ -o
outputfile” , as shown in the following example : -
gcc filename -o outputfile
 Again, you can run your program with "./outputfile". (The ./ is there to ensure you run the
program for the current working directory.)

Note: If you need to use functions from the math library (generally functions from “math.h”
such as sin or sqrt), then you need to explicitly ask it to link with that library with the “ –l ” flag
and the library “m”: gcc filename -o outputfile -lm Lab Manual for Programming in C Lab by Er.
Suraj Deb Barma

Turbo C/C++

Open Turbo C/C++ from your Desktop or Programs menu. Select “File” from Menu bar and
select option “New” and Save C program with filename „.C‟ extension. To do compiling – Select
-> Compile from menu and click-> compile. If the compilation is successful – you will see a
“success” message. Else you will see the number of errors. To RUN the program – you may
select ->Run from menu and click -> Run Now you will see the output screen.

STRUCTURE OF „C‟ PROGRAM :
 C program is a collection of several instructions where each instruction is written as a separate
statement. The C program starts with a main function followed by the opening braces which
indicates the start of the function. Then follows the variable and constant declarations which
are followed by the statements that include input and output statements. C program may

P a g e | 5

Lab manual for Programming in C By Rinki Bhati

contain one or more sections as shown below:

INSTRUCTIONS TO STUDENTS FOR PREPARING A LAB REPORT

This Lab Manual is prepared to help the students with their practical understanding and
development of programming skills, and may be used as a base reference during the
lab/practical classes.
Students have to submit Lab Exercise report of previous lab into corresponding next lab, and
can be collected back after the instructor/course co-ordinator after it has been checked and
signed. At the end of the semester, students should compile all the Lab Exercise reports into a
single report and submit during the end semester sessional examination.
 “Sample of Lab report” is shown for LAB Exercise #1 in this manual. For the rest of the labs, the
reporting style as provided is to be followed.
The lab report to be submitted during the end semester Sessional Examination should include
at least the following topics:-
1. Top Cover page
2. Index
3. Title of the program

5. Algorithm
6. Flowchart (optional)
7. Coding
8. Output (compilation, debugging & testing)

P a g e | 6

Lab manual for Programming in C By Rinki Bhati

Shorting an Array

Original Array: 5 2 8 7 1

Array after shorting: 1 2 5 7 8

Elements will be short in such a way that smallest element will appear on extreme left

which in this case 1. The largest element will appear on extreme right which in class case

is 8.

ALGORITHM:
o STEP 1: Start

o STEP 2: initialize arr[] = {5,2,8,7,1}..

o STEP 3: Set temp = 0

o STEP 4: length= sizeof9arr)/sizeof(arr[0])

o STEP 5: Print “Element of Original Array”

o STEP 6: Set i=0. Repeat STEP 7 and STEP 8 until i<length

o STEP 7: Print arr[i]

o STEP 8: i=i+1.

o STEP 9: Set i=0, Repeat STEP 10 until i<n

o STEP 10: Set j=i+1. Repeat STEP 11 until j<length

o STEP 11: if (arr[i]>arr[j]) then

then = arr[i]

arr[i]=arr[j]

arr[j]=temp

o STEP 12: j=j+1.

o STEP 13: i=i+1.

o STEP 14: print new line

o STEP 15: Print “Element of array sorted in ascending order”

o STEP 16: Set i=0. Repeat STEP 17 and STEP 18 until i<length

o STEP 17: print arr[i]

o STEP 18: i=i+1.

o STEP 19: Return 0.

o STEP 20: END.

 Practical 1

P a g e | 7

Lab manual for Programming in C By Rinki Bhati

PROGRAM:

OUTPUT:

Elements of original array:

5 2 8 7 1

Elements of array sorted in ascending order:

1 2 5 7 8

 The Addition of Two Matrices Using Functions

#include <stdio.h>

int main()

{

 //Initialize array

 int arr[] = {5, 2, 8, 7, 1};

 int temp = 0;

 //Calculate length of array arr

 int length = sizeof(arr)/sizeof(arr[0]);

 //Displaying elements of original array

 printf("Elements of original array: \n");

 for (int i = 0; i < length; i++) {

 printf("%d ", arr[i]);

 }

 //Sort the array in ascending order

 for (int i = 0; i < length; i++) {

 for (int j = i+1; j < length; j++) {

 if(arr[i] > arr[j]) {

 temp = arr[i];

 arr[i] = arr[j];

 arr[j] = temp;

 }

 }

 }

 printf("\n");

 //Displaying elements of array after sorting

 printf("Elements of array sorted in ascending order: \n");

 for (int i = 0; i < length; i++) {

 printf("%d ", arr[i]);

 }

 return 0;

}

 Practical 2

P a g e | 8

Lab manual for Programming in C By Rinki Bhati

 Matrix 1

Matrix 2 Added Matric

ALGORITHM:
o STEP 1: Input matrix 1 and matrix 2.

o STEP 2: If the number of rows and number of columns of matrix 1 and matrix 2 is

equal,

o STEP 3: for i = 1 to rows [matrix 1]

o STEP 4: for j = 1 to columns matrix [1]

o STEP 5: input matrix 1 [i,j]

o STEP 6: input matrix 2 [i,j]

o STEP 7: matrix 3 [i,j] = matrix 1 [i,j] + matrix 2 [i,j];

1 0 2

0 3 0

4 0 2

2 0 4

0 6 0

8 0 18

1 0 2

0 3 0

4 0 5

P a g e | 9

Lab manual for Programming in C By Rinki Bhati

o STEP 8: Display matrix 3 [i,j];

PROGRAM:

 The Multiplication of Two Matrices

1 2 5 6 1*5 + 2*0 1*6 + 2*7 5 20

#include <stdio.h>

int main()

{

 int r, c, mat1[100][100], mat2[100][100], sum[100][100], i, j;

 printf("Enter the number of rows and columns :\n");

 scanf("%d %d", &r, &c);

 printf("Input Matrix 1 elements :\n");

 for (i = 0; i < r; ++i)

 for (j = 0; j < c; ++j)

 {

 scanf("%d", &mat1[i][j]);

 }

 printf("\n Matrix 1\t\n");

 for (i = 0; i < r; i++)

 {

 for (j = 0; j < c; j++)

 {

 printf("%d", mat1[i][j]);

 }

 printf("\n");

 }

 printf("Input Matrix 2 elements :\n");

 for (i = 0; i < r; ++i)

 for (j = 0; j < c; ++j)

 {

 scanf("%d", &mat2[i][j]);

 }

 printf("\n Matrix 2\n");

 for (i = 0; i < r; i++)

 {

 for (j = 0; j < c; j++)

 {

 printf("%d", mat1[i][j]);

 }

 printf("\n");

 }

 // Adding Two matrices

 printf("\nAdded Matrix\n");

 Practical 3

P a g e | 10

Lab manual for Programming in C By Rinki Bhati

3 4 0 7 3*5 + 4*0 3*6 + 4*7 15 46

ALGORITHM:
o STEP 1: Start the Program.

o STEP 2: Enter the row and column of the first (a) matrix.

o STEP 3: Enter the elements of first (a) matrix.

o STEP 4: Enter the row and column of the second (b) matrix.

o STEP 5: Enter the elements of second (b) matrix.

o STEP 6: Set a loop up to row

o STEP 7: Set an inner loop up to the column.

o STEP 8: Set another loop up to the column.

o STEP 9: Multiply the first (a) and second (b) matrix and store the element in the

third matrix (c).

o STEP 10: Print the final matrix.

o STEP 11: Stop the Program.

PROGRAM:

#include <stdio.h>

int main()

{

 int m, n, p, q, c, d, k, sum = 0;

 int first[10][10], second[10][10], multiply[10][10];

 printf("Enter number of rows and columns of first matrix\n");

 scanf("%d%d", &m, &n);

 printf("Enter elements of first matrix\n");

 for (c = 0; c < m; c++)

P a g e | 11

Lab manual for Programming in C By Rinki Bhati

 Push and pop operation in stack

Stack is an Abstract Data Type (ADT) and it is a linear data structure where insertion or

deletion of elements is done from only one side/end which is called top of the stack.

Some Applications of Stack are following:

 Used in function calls

 Infix to postfix conversion (and other similar

conversions)

 Parenthesis matching and more…

Push Operation: The process of pitting a new data element

onto stack is known as Push Operation. Push operation

involves a series of steps –

 Step 1 – Checks if stack is full.

 Step 2 – If the stack is full, produces an error and exit.

 Step 3 – If the stack is not full, increments top to point next empty space.

 Step 4 – Adds data element to the stack location, where top is pointing.

 Practical 4

P a g e | 12

Lab manual for Programming in C By Rinki Bhati

 Step 5 – Returns success.

Example:

void push(int data) {
 if(!isFull()) {
 top = top + 1;
 stack[top] = data;
 } else {
 printf("Could not insert data, Stack is full.\n");
 }
}

Pop Operation: Accessing the content while removing it from the tack is known as Pop

Operation. A Pop operation may involve the following steps –

 Step 1 – Checks if stack is empty.

 Step 2 – If the stack is empty, produces an error and exit.

 Step 3 – If the stack is not empty, accesses the data element at which top to

pointing.

 Step 4 – Decreases the value of top by 1.

 Step 5 – Returns success.

Push Operation
E

A

B

C

D TOP

Stack

A

B

C

D

E TOP

Stack

Pop Operation

A

B

C

D

E TOP

Stack

A

B

C

D TOP

Stack

E

P a g e | 13

Lab manual for Programming in C By Rinki Bhati

Example:

int pop(int data) {

 if(!isempty()) {
 data = stack[top];
 top = top - 1;
 return data;
 } else {
 printf("Could not retrieve data, Stack is empty.\n");
 }
}

Inserting and Deleting Elements in Queue

Queue: is a linear data structure, where the insertion is done at rear end and the deletion

is done at the front end.

The order of queue is FIFO – First In First Out

Operations:

 Insert – Inserting an element into a queue.

 Delete – Deleting an element from the queue.

Conditions:

 Queue over Flow – Tring to insert an element into a full queue.

 Queue under Flow – Trying to delete an element from an empty queue.

Program:

#include <stdio.h>

#define MAX 50

void insert();

int array[MAX];

int rear = - 1;

int front = - 1;

 Practical 5

Front End Rear End

P a g e | 14

Lab manual for Programming in C By Rinki Bhati

main(){

 int add_item;

 int choice;

 while (1){

 printf("1.Insert element to queue \n");

 printf("2.Delete an element from queue\n");

 printf("3.Display elements of queue \n");

 printf("4.Quit \n");

 printf("Enter your choice : ");

 scanf("%d", &choice);

 switch (choice){

 case 1:

 insert();

 break;

 case 2:

 delete();

 case 3:

 display();

 break;

 case 4:

 exit(1);

 default:

 printf("Wrong choice \n");

 }

 }

}

void insert(){

 int add_item;

 if (rear == MAX - 1)

 printf("Queue Overflow \n");

 else{

 if (front == - 1)

 /*If queue is initially empty */

 front = 0;

 printf("Inset the element in queue : ");

 scanf("%d", &add_item);

 rear = rear + 1;

 array[rear] = add_item;

 }

}

void display(){

 int i;

 if (front == - 1)

 printf("Queue is empty \n");

P a g e | 15

Lab manual for Programming in C By Rinki Bhati

 else{

 printf("Queue is : \n");

 for (i = front; i <= rear; i++)

 printf("%d ", array[i]);

 printf("\n");

 }

}

void delete(){

 if (front == - 1 || front > rear){

 printf("Queue Underflow \n");

 return ;

 }

 else{

 printf("Element deleted from queue is : %d\n",array[front]);

 front = front + 1;

 }

}

Output:

1.Insert element to queue

2.Delete an element from queue

3.Display elements of queue

4.Quit

Enter your choice: 1

Inset the element in queue: 12

1.Insert element to queue

2.Delete an element from queue

3.Display elements of queue

4.Quit

Enter your choice: 1

Inset the element in queue: 23

1.Insert element to queue

2.Delete an element from queue

P a g e | 16

Lab manual for Programming in C By Rinki Bhati

3.Display elements of queue

4.Quit

Enter your choice: 1

Inset the element in queue: 34

1.Insert element to queue

2.Delete an element from queue

3.Display elements of queue

4.Quit

Enter your choice: 2

Element deleted from queue is: 12

Queue is:

23 34

1.Insert element to queue

2.Delete an element from queue

3.Display elements of queue

4.Quit

Enter your choice: 2

Element deleted from queue is: 23

Queue is:

34

1.Insert element to queue

2.Delete an element from queue

3.Display elements of queue

4.Quit

Enter your choice: 4

 Inserting

and Deleting Elements in Circular

Queue

Circular Queue is a liner data structure in

which the operation are performed based

on (FIFO First in First Out) principle and

the las position is connected back to the

first position to make a circle. It is also

called „Ring Buffer’

 Practical 6
0

1

2 3

4

5

P a g e | 17

Lab manual for Programming in C By Rinki Bhati

0 1 2 3 4 5

Insertion (Queue, Key) –

begin

 if front = 0 and rear = n – 1, or front = rear + 1, then queue is

full, and return

 otherwise

 if front = -1, then front = 0 and rear = 0

 else

 if rear = n – 1, then, rear = 0, else rear := rear + 1

 queue[rear] = key

end

Delete (Queue) –

begin

 if front = -1 then queue is empty, and return

 otherwise

 item := queue[front]

 if front = rear, then front and rear will be -1

 else

 if front = n – 1, then front := 0 else front := front + 1

end

Program –

#include <iostream>

using namespace std;

int cqueue[5];

int front = -1, rear = -1, n=5;

void insertCQ(int val) {

 if ((front == 0 && rear == n-1) || (front == rear+1)) {

 cout<<"Queue Overflow \n";

 return;

 }

 if (front == -1) {

 front = 0;

 rear = 0;

 }

 else {

 if (rear == n - 1)

 rear = 0;

 else

 rear = rear + 1;

 }

 cqueue[rear] = val ;

}

10 20 30

10

20

30

P a g e | 18

Lab manual for Programming in C By Rinki Bhati

void deleteCQ() {

 if (front == -1) {

 cout<<"Queue Underflow\n";

 return ;

 }

 cout<<"Element deleted from queue is : "<<cqueue[front]<<endl;

 if (front == rear) {

 front = -1;

 rear = -1;

 }

 else {

 if (front == n - 1)

 front = 0;

 else

 front = front + 1;

 }

}

void displayCQ() {

 int f = front, r = rear;

 if (front == -1) {

 cout<<"Queue is empty"<<endl;

 return;

 }

 cout<<"Queue elements are :\n";

 if (f <= r) {

 while (f <= r){

 cout<<cqueue[f]<<" ";

 f++;

 }

 }

 else {

 while (f <= n - 1) {

 cout<<cqueue[f]<<" ";

 f++;

 }

 f = 0;

 while (f <= r) {

 cout<<cqueue[f]<<" ";

 f++;

 }

 }

 cout<<endl;

}

int main() {

 int ch, val;

 cout<<"1)Insert\n";

 cout<<"2)Delete\n";

 cout<<"3)Display\n";

 cout<<"4)Exit\n";

 do {

P a g e | 19

Lab manual for Programming in C By Rinki Bhati

 cout<<"Enter choice : "<<endl;

 cin>>ch;

 switch(ch) {

 case 1:

 cout<<"Input for insertion: "<<endl;

 cin>>val;

 insertCQ(val);

 break;

 case 2:

 deleteCQ();

 break;

 case 3:

 displayCQ();

 break;

 case 4:

 cout<<"Exit\n";

 break;

 default: cout<<"Incorrect!\n";

 }

 } while(ch != 4);

 return 0;

}

Output

1)Insert

2)Delete

3)Display

4)Exit

Enter choice :

1

Input for insertion:

10

Enter choice :

1

Input for insertion:

20

Enter choice :

1

Input for insertion:

30

Enter choice :

1

Input for insertion:

40

Enter choice :

1

Input for insertion:

50

Enter choice :

P a g e | 20

Lab manual for Programming in C By Rinki Bhati

3

Queue elements are :

10 20 30 40 50

Enter choice :

2

Element deleted from queue is : 10

Enter choice :

2

Element deleted from queue is : 20

Enter choice :

3

Queue elements are :

30 40 50

Enter choice :

4

Exit

 Inserting and Deleting Elements in Linked List

 Insertion – Adds a new element

 Deletion – Removes the existing elements

Important Points:

 head points to the first node of the liked list

 next pointer of the last is NULL , so if the next current node is NULL , we have

reached the end of the linked list.

Program:

// Linked list operations in C

#include <stdio.h>
#include <stdlib.h>

// Create a node
struct Node {
 int item;
 struct Node* next;
};

void insertAtBeginning(struct Node** ref, int data) {
 // Allocate memory to a node
 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

 // insert the item
 new_node->item = data;
 new_node->next = (*ref);

 Practical 7

P a g e | 21

Lab manual for Programming in C By Rinki Bhati

 // Move head to new node
 (*ref) = new_node;
}

// Insert a node after a node
void insertAfter(struct Node* node, int data) {
 if (node == NULL) {
 printf("the given previous node cannot be NULL");
 return;
 }

 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
 new_node->item = data;
 new_node->next = node->next;
 node->next = new_node;
}

void insertAtEnd(struct Node** ref, int data) {
 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
 struct Node* last = *ref;

 new_node->item = data;
 new_node->next = NULL;

 if (*ref == NULL) {
 *ref = new_node;
 return;
 }

 while (last->next != NULL)
 last = last->next;

 last->next = new_node;
 return;
}

void deleteNode(struct Node** ref, int key) {
 struct Node *temp = *ref, *prev;

 if (temp != NULL && temp->item == key) {
 *ref = temp->next;
 free(temp);
 return;
 }
 // Find the key to be deleted
 while (temp != NULL && temp->item != key) {
 prev = temp;
 temp = temp->next;
 }

 // If the key is not present
 if (temp == NULL) return;

 // Remove the node

P a g e | 22

Lab manual for Programming in C By Rinki Bhati

 prev->next = temp->next;

 free(temp);
}

// Print the linked list
void printList(struct Node* node) {
 while (node != NULL) {
 printf(" %d ", node->item);
 node = node->next;
 }
}

// Driver program
int main() {
 struct Node* head = NULL;

 insertAtEnd(&head, 1);
 insertAtBeginning(&head, 2);
 insertAtBeginning(&head, 3);
 insertAtEnd(&head, 4);
 insertAfter(head->next, 5);

 printf("Linked list: ");
 printList(head);

 printf("\nAfter deleting an element: ");
 deleteNode(&head, 3);
 printList(head);
}

 Inserting and Deleting Elements in Doubly Linked

List

Doubly Linked List is a variation of Linked list in which navigation is possible in both

ways, either forward and backward easily as compared to Single Linked List.

Doubly Linked List Representation:

 Practical 8

P a g e | 23

Lab manual for Programming in C By Rinki Bhati

Insertion Operation:

//insert link at the first location

void insertFirst(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //update first prev link

 head->prev = link;

 }

 //point it to old first link

 link->next = head;

 //point first to new first link

 head = link;

}

Deletion Operation:

//delete first item

struct node* deleteFirst() {

 //save reference to first link

 struct node *tempLink = head;

 //if only one link

 if(head->next == NULL) {

 last = NULL;

 } else {

 head->next->prev = NULL;

 }

 head = head->next;

 //return the deleted link

 return tempLink;

}

The Factorial of a given number with recursion and

without recursion

Using Recursion:

 Practical 9

P a g e | 24

Lab manual for Programming in C By Rinki Bhati

#include<stdio.h>

long int multiplyNumbers(int n);

int main() {

 int n;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 printf("Factorial of %d = %ld", n, multiplyNumbers(n));

 return 0;

}

long int multiplyNumbers(int n) {

 if (n>=1)

 return n*multiplyNumbers(n-1);

 else

 return 1;

}

Output:

Enter a positive integer: 6

Factorial of 6 = 720

Without Recursion:

#include <stdio.h>

int main()

{

 int n, i;

 long fact=1;

 printf(" Enter any number: ");

 scanf("%d", &n);

 for (i=1; i<=n; i++)

 fact = fact*i;

 printf(" Factorial = %ld", fact);

 getch();

}

P a g e | 25

Lab manual for Programming in C By Rinki Bhati

 Fibonacii series with recursion and without recursion

 Without Recursion:

#include <stdio.h>

int main()

{

 int n1 = 0, n2 = 1, n3, i, number;

 printf("Enter the number of elements:");

 scanf("%d", &number);

 printf("\n%d %d", n1, n2); //printing 0 and 1

 for (i = 2; i < number; ++i) //loop starts from 2 because 0 and 1 are already

 printed

 {

 n3 = n1 + n2;

 printf(" %d", n3);

 n1 = n2;

 n2 = n3;

 }

 return 0;

}

Output:

Enter the number of elements:15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

 With Recursion:

#include<stdio.h>

void printFibonacci(int n){

 static int n1=0,n2=1,n3;

 if(n>0){

 n3 = n1 + n2;

 n1 = n2;

 n2 = n3;

 printf("%d ",n3);

 printFibonacci(n-1);

 }

}

int main(){

 int n;

 printf("Enter the number of elements: ");

 scanf("%d",&n);

 printf("Fibonacci Series: ");

 Practical

10

P a g e | 26

Lab manual for Programming in C By Rinki Bhati

 printf("%d %d ",0,1);

 printFibonacci(n-2);//n-2 because 2 numbers are already printed

 return 0;

 }

Output:

Enter the number of elements:15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

 Program for binary search tree operation

Binary search tree is a data structure that quickly allows us to maintain a sorted list of

numbers.

 It is called a binary tree because each tree node has a maximum of two children.

 It is called a search tree because it can be used to search for the presence of a

number in O(log(n)) time.

The properties that separate a binary search tree from a regular binary tree is

1. All nodes of left subtree are less than the root node

2. All nodes of right subtree are more than the root node

3. Both subtrees of each node are also BSTs i.e. they have the above two properties

// Binary Search Tree operations in C

#include <stdio.h>

#include <stdlib.h>

struct node

{

 int key;

 struct node *left, *right;

};

// Create a node

struct node *newNode(int item)

{

 struct node *temp = (struct node *)malloc(sizeof(struct node));

 temp->key = item;

 temp->left = temp->right = NULL;

 return temp;

}

// Inorder Traversal

 Practical

11

P a g e | 27

Lab manual for Programming in C By Rinki Bhati

void inorder(struct node *root)

{

 if (root != NULL)

 {

 // Traverse left

 inorder(root->left);

 // Traverse root

 printf("%d -> ", root->key);

 // Traverse right

 inorder(root->right);

 }

}

// Insert a node

struct node *insert(struct node *node, int key)

{

 // Return a new node if the tree is empty

 if (node == NULL)

 return newNode(key);

 // Traverse to the right place and insert the node

 if (key < node->key)

 node->left = insert(node->left, key);

 else

 node->right = insert(node->right, key);

 return node;

}

// Find the inorder successor

struct node *minValueNode(struct node *node)

{

 struct node *current = node;

 // Find the leftmost leaf

 while (current && current->left != NULL)

 current = current->left;

 return current;

}

// Deleting a node

P a g e | 28

Lab manual for Programming in C By Rinki Bhati

struct node *deleteNode(struct node *root, int key)

{

 // Return if the tree is empty

 if (root == NULL)

 return root;

 // Find the node to be deleted

 if (key < root->key)

 root->left = deleteNode(root->left, key);

 else if (key > root->key)

 root->right = deleteNode(root->right, key);

 else

 {

 // If the node is with only one child or no child

 if (root->left == NULL)

 {

 struct node *temp = root->right;

 free(root);

 return temp;

 }

 else if (root->right == NULL)

 {

 struct node *temp = root->left;

 free(root);

 return temp;

 }

 // If the node has two children

 struct node *temp = minValueNode(root->right);

 // Place the inorder successor in position of the node to be deleted

 root->key = temp->key;

 // Delete the inorder successor

 root->right = deleteNode(root->right, temp->key);

 }

 return root;

}

// Driver code

int main()

{

 struct node *root = NULL;

P a g e | 29

Lab manual for Programming in C By Rinki Bhati

 root = insert(root, 8);

 root = insert(root, 3);

 root = insert(root, 1);

 root = insert(root, 6);

 root = insert(root, 7);

 root = insert(root, 10);

 root = insert(root, 14);

 root = insert(root, 4);

 printf("Inorder traversal: ");

 inorder(root);

 printf("\nAfter deleting 10\n");

 root = deleteNode(root, 10);

 printf("Inorder traversal: ");

 inorder(root);

}

The Selection Short Technique

// Selection sort in C

#include <stdio.h>

// function to swap the the position of two elements
void swap(int *a, int *b)
{
 int temp = *a;
 *a = *b;
 *b = temp;
}

void selectionSort(int array[], int size)
{

 Practical

12

P a g e | 30

Lab manual for Programming in C By Rinki Bhati

 for (int step = 0; step < size - 1; step++)
 {
 int min_idx = step;
 for (int i = step + 1; i < size; i++)
 {

 // To sort in descending order, change > to < in this line.
 // Select the minimum element in each loop.
 if (array[i] < array[min_idx])
 min_idx = i;
 }

 // put min at the correct position
 swap(&array[min_idx], &array[step]);
 }
}

// function to print an array
void printArray(int array[], int size)
{
 for (int i = 0; i < size; ++i)
 {
 printf("%d ", array[i]);
 }
 printf("\n");
}

// driver code
int main()
{
 int data[] = {20, 12, 10, 15, 2};
 int size = sizeof(data) / sizeof(data[0]);
 selectionSort(data, size);
 printf("Sorted array in Acsending Order:\n");
 printArray(data, size);
}

The Bubble Short Technique

// C program for implementation of Bubble sort

#include <stdio.h>

void swap(int *xp, int *yp)

 Practical

13

P a g e | 31

Lab manual for Programming in C By Rinki Bhati

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

// A function to implement bubble sort

void bubbleSort(int arr[], int n)

{

 int i, j;

 for (i = 0; i < n - 1; i++)

 // Last i elements are already in place

 for (j = 0; j < n - i - 1; j++)

 if (arr[j] > arr[j + 1])

 swap(&arr[j], &arr[j + 1]);

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver program to test above functions

int main()

{

 int arr[] = {64, 34, 25, 12, 22, 11, 90};

 int n = sizeof(arr) / sizeof(arr[0]);

 bubbleSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

}

The Quick Short Technique

 Practical

14

P a g e | 32

Lab manual for Programming in C By Rinki Bhati

Quick sort is a fast sorting algorithm used to sort a list of elements. Quick sort algorithm

is invented by C. A. R.Hoare.

The quick sort algorithm attempts to separate the list of elements into two parts and then

sort each part recursively. In quick sort, the partition of the list is performed based on the

element called pivot. Here pivot element is one of the elements in the list.

The list is divided into two partitions such that "all elements to the left of pivot are

smaller than the pivot and all elements to the right of pivot are greater than or equal

to the pivot".

Step by Step Process

In Quick sort algorithm, partitioning of the list is performed using following steps...

 Step 1 - Consider the first element of the list as pivot (i.e., Element at first

position in the list).

 Step 2 - Define two variables i and j. Set i and j to first and last elements of the list

respectively.

 Step 3 - Increment i until list[i] > pivot then stop.

 Step 4 - Decrement j until list[j] < pivot then stop.

 Step 5 - If i < j then exchange list[i] and list[j].

 Step 6 - Repeat steps 3,4 & 5 until i > j.

 Step 7 - Exchange the pivot element with list[j] element.

Program:

#include<stdio.h>

#include<conio.h>

void quickSort(int [10],int,int);

void main(){

 int list[20],size,i;

 printf("Enter size of the list: ");

 scanf("%d",&size);

 printf("Enter %d integer values: ",size);

 for(i = 0; i < size; i++)

 scanf("%d",&list[i]);

 quickSort(list,0,size-1);

P a g e | 33

Lab manual for Programming in C By Rinki Bhati

 printf("List after sorting is: ");

 for(i = 0; i < size; i++)

 printf(" %d",list[i]);

 getch();

}

void quickSort(int list[10],int first,int last){

 int pivot,i,j,temp;

 if(first < last){

 pivot = first;

 i = first;

 j = last;

 while(i < j){

 while(list[i] <= list[pivot] && i < last)

 i++;

 while(list[j] > list[pivot])

 j--;

 if(i <j){

 temp = list[i];

 list[i] = list[j];

 list[j] = temp;

 }

 }

 temp = list[pivot];

 list[pivot] = list[j];

 list[j] = temp;

 quickSort(list,first,j-1);

 quickSort(list,j+1,last);

 }

}

Output:

Enter size of the list: 5

Enter 5 integer values: 8 7 12 4 3

List after sorting is: 3 4 7 8 12

P a g e | 34

Lab manual for Programming in C By Rinki Bhati

The merge short technique

Merge sort is a sorting technique based on divide and conquer technique. With worst-
case time complexity being Ο(n log n), it is one of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines them in a sorted
manner.

Algorithm
Merge sort keeps on dividing the list into equal halves until it can no more be divided.
By definition, if it is only one element in the list, it is sorted. Then, merge sort combines
the smaller sorted lists keeping the new list sorted too.

 Step 1 − if it is only one element in the list it is already sorted, return.
 Step 2 − divide the list recursively into two halves until it can no more be divided.
 Step 3 − merge the smaller lists into new list in sorted order.

/* C program for Merge Sort */

#include <stdio.h>

#include <stdlib.h>

// Merges two subarrays of arr[].

// First subarray is arr[l..m]

// Second subarray is arr[m+1..r]

void merge(int arr[], int l, int m, int r)

{

 int i, j, k;

 int n1 = m - l + 1;

 int n2 = r - m;

 /* create temp arrays */

 Practical

15

P a g e | 35

Lab manual for Programming in C By Rinki Bhati

 int L[n1], R[n2];

 /* Copy data to temp arrays L[] and R[] */

 for (i = 0; i < n1; i++)

 L[i] = arr[l + i];

 for (j = 0; j < n2; j++)

 R[j] = arr[m + 1 + j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0; // Initial index of first subarray

 j = 0; // Initial index of second subarray

 k = l; // Initial index of merged subarray

 while (i < n1 && j < n2)

 {

 if (L[i] <= R[j])

 {

 arr[k] = L[i];

 i++;

 }

 else

 {

 arr[k] = R[j];

 j++;

 }

 k++;

 }

 /* Copy the remaining elements of L[], if there

 are any */

 while (i < n1)

 {

 arr[k] = L[i];

 i++;

 k++;

 }

 /* Copy the remaining elements of R[], if there

 are any */

 while (j < n2)

 {

 arr[k] = R[j];

 j++;

 k++;

 }

P a g e | 36

Lab manual for Programming in C By Rinki Bhati

}

/* l is for left index and r is right index of the

sub-array of arr to be sorted */

void mergeSort(int arr[], int l, int r)

{

 if (l < r)

 {

 // Same as (l+r)/2, but avoids overflow for

 // large l and h

 int m = l + (r - l) / 2;

 // Sort first and second halves

 mergeSort(arr, l, m);

 mergeSort(arr, m + 1, r);

 merge(arr, l, m, r);

 }

}

/* UTILITY FUNCTIONS */

/* Function to print an array */

void printArray(int A[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 printf("%d ", A[i]);

 printf("\n");

}

/* Driver code */

int main()

{

 int arr[] = {12, 11, 13, 5, 6, 7};

 int arr_size = sizeof(arr) / sizeof(arr[0]);

 printf("Given array is \n");

 printArray(arr, arr_size);

 mergeSort(arr, 0, arr_size - 1);

 printf("\nSorted array is \n");

 printArray(arr, arr_size);

 return 0;

P a g e | 37

Lab manual for Programming in C By Rinki Bhati

}

Output:

Given array is

12 11 13 5 6 7

Sorted array is

5 6 7 11 12 13

The binary search procedures to search an element in given

list

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This

search algorithm works on the principle of divide and conquer. For this algorithm to work

properly, the data collection should be in the sorted form.

Program
#include <stdio.h>

int binarySearch(int arr[], int size, int element)
{
 int low, mid, high;
 low = 0;
 high = size - 1;
 // Kepp Searching Until Low<= High
 while (low <= high)
 {

 Practical

16

P a g e | 38

Lab manual for Programming in C By Rinki Bhati

 mid = (low + high) / 2;

 if (arr[mid] == element)
 {
 return mid;
 }

 if (arr[mid] < element)
 {
 low = mid + 1;
 }
 else
 {
 high = mid - 1;
 }
 }
 return -1;
}

int main()
{

 // Sorted Array for Linear Search
 int arr[] = {1, 2, 4, 48, 88, 77, 100, 164, 188, 265, 654, 678, 684, 714, 722
, 850};
 int size = sizeof(arr) / sizeof(int);

 int element = 850;
 int searchIndex = binarySearch(arr, size, element);
 printf("The Element %d was founded at %d \n", element, searchIndex);
 return 0;
}

Output:

The Element 850 was founded at 15

 The linear search procedures to search an element in a

given list
Linear search algorithm finds a given element in a list of elements with O(n) time

complexity where n is total number of elements in the list. This search process starts

comparing search element with the first element in the list. If both are matched then result

is element found otherwise search element is compared with the next element in the list.

Algorithm

 Step 1 - Read the search element from the user.

 Step 2 - Compare the search element with the first element in the list.

 Practical

17

P a g e | 39

Lab manual for Programming in C By Rinki Bhati

 Step 3 - If both are matched, then display "Given element is found!!!" and

terminate the function

 Step 4 - If both are not matched, then compare search element with the next

element in the list.

 Step 5 - Repeat steps 3 and 4 until search element is compared with last element in

the list.

 Step 6 - If last element in the list also doesn't match, then display "Element is not

found!!!" and terminate the function.

#include <stdio.h>

int search(int arr[], int n, int x)

{

 int i;

 for (i = 0; i < n; i++)

 if (arr[i] == x)

 return i;

 return -1;

}

// Driver code

int main(void)

{

 int arr[] = {2, 3, 4, 10, 40};

 int x = 10;

 int n = sizeof(arr) / sizeof(arr[0]);

 // Function call

 int result = search(arr, n, x);

 (result == -1)

 ? printf("Element is not present in array")

 : printf("Element is present at index %d", result);

 return 0;

}

Output:

Element is present at index 3

P a g e | 40

Lab manual for Programming in C By Rinki Bhati

